Lecture 7: Countable and uncountable sets

Definition 1: A set S is called denumerable if it is equivalent to N.

2: A set is called countable if it is either finite or denumerable.

3: A set which is not countable is called uncountable set.

Examples:
1. The set of all even natural number E is countable by f: N — E as f(n) = 2n.
2. Theset S ={3,2,2, 1,
3. Z is countable by f:7Z — N as

2n ifn>0
n:
J(n) {1—271 if n <0.

...} is countable by f: N — S as f(n) = iy for alln € N.

Lemma: If a set X is infinite, then there exists a one-one function f : N — X.

Proof: Let X be infinite. Then 3 an element say a; € X. We show by induction that for
every n > 2, 1 a, € X different from aq,...,a,_1.

Now, a; has been chosen, consider the set X \ {a;}. If this set is empty, then X = {a},
which is finite. As X is infinite X \ {a1} is nonempty, so let ay € X \ {a;}. This proves the
basis case.

So suppose aq,...,a,, € X has been chosen corresponding to the numbers 1,2,...,m, the
set X \ {a1,...,an} is non-empty, otherwise X = {ay,...,a,} would be finite. So let
ami1 € X \ {a1,aq,...,a,}. This proves the induction steps.

Hence, corresponding to 1, there exists a; € X, and for each n > 2, there exists a,, € X
different from all of ay,...,a,_1. Define the function f : N — X by f(n) = a,. Then f is
one-one.

Theorem: For a non-empty set A following statements are equivalent:
1. A is countable
2. There is a surjective map from N to A
3. There is an injective map from A to N

proof (1) = (2). Suppose that A is countable. There are two cases-
e A is countably infinite
e A is finite

When A is countably infinite then A &~ N. There exists a bijective map f: A — N, which is
also sujective. When A is finite then since A # ¢, so A =~ J,, = {1,2,...,n} for some positive



integer n. That means there is a bijective map ¢g: J, — A. We define a map h: N — A by

k ifk=1,2,...
hiky = L9 20 m
g(1) otherwise

Thus h(N) = g(J,) = A. So the map h is surjective.

(2) = (3). Assume (2) occurs. That means there exist a surjective map f: N — A. We
wish to find an injective map from A to N. Since f is surjective, for any a € A, f~*(a) =
{x € N|f(z) = a} is a non-empty subset of N. By well ordering property of N, f~(a) has
least element for every a € A, which is unique. We define a map g: A — N by g(a) =
the least element of f~!(a) for every a € A. Clearly when a # b then g(a) # g(b) because
f~Ya) N f71(b) = ¢. This proves (3).

(3) = (1). Suppose f : A — N is injective map. If A is finite, then nothing to prove.
Suppose A is an infinite. Then by above lemma, there exists injective map g : N — A. Now
by CSB-theorem, there exists a bijective map h: A — N. So A is countable.

1. Let X and Y be sets and let f : X — Y be an injective map. If Y is countable then
so is X.
Proof: Since Y is countable, There is a bijective map ¢ : ¥ — N. Then the function
go f: X — Nis injective. Hence by above theorem, X is countable.

2. A subset of a countable set is countable.
Proof: Let A be a countable set and S C A. Since A is countable, 3 an injective map
f A — N. Also inclusion map ¢ : S — A is injective. Then the composition map
fo1:5 — Nis an injective map. Hence S is countable.

3. The image of a countable set under any map is countable.
Proof: Let f: A — B be a surjective map, where A is a countable set. Since A is
countable so there exists a surjective map from g: N — A. Considering the composite
map fog: N — B is surjective as composition of two surjective maps is surjective.
Hence B is countable.

4. The product of two countable sets is countable.
Proof: Let A and B be countable sets. Then there exist bijective maps f: N — A
and g: N — B. Define a map h: Nx N — A x B by h(m,n) = (f(m),g(n)). Clearly
h is a bijection. Also since N~ N x N, so N~ A x B.

5. Q is countable.
Proof: Define f : Q — Z x N by f(%) = (a,b), here g.c.d.(a,b) = 1. Then f is
bijective.

Theorem: The union of two countable sets is countable.

Proof: Let A and B be countable set. We may assume without loss of generality that A
and B are disjoint. We can do this since AUB = AU(B\ A), and Since B\ A C B therefore
it is also countable. Let f : N — A and g : N — B be bijective maps. Define h: N - AU B

) f(k) ifn =2k
byh(n>_{g(k) itn—2%k—1



Then h is surjective. Hence by above theorem A U B is countable.

Theorem A countable union of countable sets is countable is countable.

Proof: Let {A;}ien be a countable family, where each A; is countable. Let X = U;enA;.

If X is finite then nothig to prove. So assume that X is not finite. Then by above lemma
there exists an injective map f: N — X.

Let x € X. Then there exists at least one ¢ € N such that x € A;. Since A; is countable, let
x appears at the k-th place in the enumeration of A;.

Thus corresponding to each x € X, we have a unique pair (i, k) of natural numbers. Now
define g : X — N by g(z) = 2'3%, where i is the smallest natural number such that x € A,
and x appears at k-th position in the enumeration of A;. Note that ¢ is one-one. Hence by
CSB theorem X is countable.

Theorem For any k € N, the Cartesian product N* is denumerable.
Proof: Note that the function f : N — N¥ given by f(m) = (m,1,...,1) is one-one.
Let p1,pa, - .., px be the first k number of primes. Define g : N* — N by g(my, ma, ..., my) =

mi—1 mo—1 mg—1

pit P, ...p* " Then g is one-one. Now by CSB theorem N* is denumerable.

Theorem A finite product of countable set is countable.

Proof: Let A;,...,Ar be countable sets. We want to show that X = A; x ... x A, is
countable. If any A; =, then X =. So assume that each A; is nonempty. Since A; is
nonempty, there exists a one-one function f; : A; — N. Then the function f : X — N¥
defined by f(xy,...,2x) = (fi(z1),..., fu(xr)) is one-one. Let g : N¥ — N be one-one
function defined by g(my,ma,...,my) = p tpiet .pzl’“*l. Then go f : X — N is
one-one. Hence X is countable.

Remark: The above result is not true for infinite product. For example if S := {0, 1}",
then S is not countable. Although infinite product of a singleton set is countable.

Proof: Consider the set of all sequence on {0, 1} re., [T°2,{0,1}

S={f1f : N—={0,1}}

we will prove set S is uncountable. if it is countable then 3 a enumaration of elements of S,
as follows
fi: (ailyaﬂa"'?ain?"") VieN

let us construct a sequence f’ in {0,1} as follows.
f =1 Vie N
such that f/ =0if f;; =1 & f/ = 1if f;; = 0. clearly this,
fes
this shows that it is not possible to enumerate the elements of S.

Theorem: R is uncountable.
Proof: Suppose R is countable. We know that a subset of a countable set is countable.



consider A = (0, 1) C R. We show that A is not countable. On the contrary, suppose A
is countable. Then we can write elements of A as ri,ro,73..., where r; can be written as
ri = dpndiadss . . ., where d;; € {0,1,2,...,9}. Now consider r = dydads . . . as follows:

. 1 dis # 1
di_{? di = 1.

Then r € A but not equal to r;. Thus A is uncountable and hence R.
Cantor’s Theorem: There exists no surjection from a set X to its power set P(X).

Proof: On the contrary suppose f : X — P(X) is an onto map. For eaxh z € X, f(x) C X.
Consider the set Y = {z € X : 2 & f(x)}.

Since Y € P(X) and f is onto, there exists s € X with f(s) = Y. Then we have two
possibilities: s € Y and s ¢ Y.

If seY, then s ¢ f(s) =Y. A contradiction.

If s¢ZY, then s € f(s) =Y. A contradiction.



